В чем измеряется работа. Механическая работа

Механическая работа – определение, основные формулы и примеры вычислений

В чем измеряется работа. Механическая работа

Механическая работа – это одна из основных скалярных величин в физике. В рамках стандартной школьной программы она изучается в седьмом классе в разделе механики.

Механическая работа – один из способов изменения внутренней энергии тела или субстанции (например, газа или жидкости) наряду с такими формами теплопередачи, как теплопроводность, конвекция и излучение, которые изучаются в разделе тепловых явлений.

Что такое работа в физике – определение и формула

Механическая работа – это количество энергии, которое нужно затратить для того, чтобы тело начало равномерно замедляющееся движение и прошло некоторую дистанцию. 

В физике механической работой называется произведение силы, которая действует на некоторое тело, на расстояние, которое оно проходит под ее воздействием:

A = F * S

В более сложных случаях в формуле появляется и третья величина – косинус угла, под которым друг к другу расположены векторы движения и приложенной силы. Найти ее значение можно по формуле:

A = F * S * cosA

В чем измеряется работа

Физические единицы, в которых выражается механическая работа, – Джоули. 

Существуют разные способы для ее практического измерения, которые зависят от типа произведенного движения. При этом в формулу работы подставляют значение силы в Ньютонах и расстояния в метрах. Угол между векторами измеряют в математических единицах – градусах. 

Работа силы трения

При условиях, существующих на Земле, на любое движущееся тело оказывает воздействие сила трения, замедляющая его движение. Чаще всего это трение поверхности, по которой движется объект. Это очевидно из того факта, что при воздействии постоянной силы на тело его скорость окажется переменной. 

Следовательно, должна быть и другая сила, противодействующая ей – и это сила трения. Если система координат выбрана по направлению движения тела, то ее числовое значение будет отрицательным.

Положительная и отрицательная работа

Числовое значение работы, которую совершает сила, может становиться отрицательным в случае если ее вектор противоположен вектору скорости. 

Иными словами, сила может не только придавать телу скорость для совершения движения, но и препятствовать уже совершаемому перемещению. В таком случае она будет называться противодействующей. 

Полезная или затраченная работа

У тела, совершающего одно и то же действие, есть два значения работы. Первая из них, полезная, вычисляется по обычной формуле. 

Вторая, затраченная, по своему понятию не имеет общей формулы для вычисления и измеряется практически. Эта разница между совершенной в реальности работой и той, которая должна была быть совершена в теории, равна коэффициенту полезного действия – КПД. Он вычисляется так:

КПД = А полезная / А затраченная,

и выражается в процентах. КПД всегда меньше 100.

Мощность

Среднее количество работы, совершаемой за единицу времени (секунду), характеризует такую величину, как мощность. Формула для ее вычисления выглядит так:

Р = A / t

В качестве работы можно подставить люблю известную формулу для ее вычисления в зависимости от ситуации. Ответ будет выражен в Ваттах.

Однако при равномерном движении можно использовать и другую формулу:

Р = F * v

Подставив вместо обычной скорости мгновенную, можно получить значение мгновенной мощности.

Примеры решения задач

Рассмотрим несколько простых задач на нахождение механической работы.

Задача 1

Какую работу совершает подъемный механизм, поднимающий десятикилограммовый блок на высоту 50 метров.

Решение:

Для того, чтобы поднять тело, необходимо преодолеть действующую на него силу тяжести. То есть F, с которой поднимают блок, равна той, с которой он притягивается к земле. Так как последняя равна m * g, то для нахождения конечного результата понадобится только одна измененная версия стандартной формулы, упомянутой выше: A = S * m * g.

При помощи простой математики найдем числовой ответ:

A = 50 м * 10 кг * 10 Н/кг;

A = 5000 Дж.

Ответ: 5000 Дж.

Впрочем, не всегда речь идет о силе тяжести.

Задача 2

Какая работа совершается силой упругости, когда пружина с жесткостью 10 Н/м, сжатая на 20 см, возвращается в исходное состояние? Система замкнута, нет никаких внешних сил, воздействующих на пружину.

Решение:

Для начала нужно найти саму F упругости, которая совершает работу. Ее формула – F = x * |k|, где x – это длина, на которую сжимается или растягивается пружина, а k – коэффициент ее жесткости. Перемещение пружины равно ее деформации, и следовательно, конечная формула в этом случае будет выглядеть так: A = S * x * k = x * x * k = x2 * k.

Далее при помощи элементарных вычислений рассчитаем ответ:

A = (0,2 м)2 * 10 Н/м = 0,04 * 10 = 0,4 Дж.

Ответ: 0,4 Дж.

Но во всех задачах по данной теме траектория движения тела прямая.

Задача 3

Рассчитайте, какова сила, действующая на колесо, если на то, чтобы совершить полный оборот, ему требуется 10 кДж. Диаметр диска равен 40 см, а толщина шины – 10 см.

Решение:

В этом случае нам нужно найти не А, а F, но сделать это можно при помощи все той же формулы. Возьмем точку на поверхности колеса. Предположим, что при вращательном движении ее вектор будет противоположен вектору приложения силы, а значит косинусом в формуле вновь можно пренебречь.

Таким образом, за один оборот колеса точка пройдет расстояние, равное длине окружности, которую можно вычислить как 2πr или πd.

Диаметр окружности можно найти из предоставленных данных: он равен сумме диаметра диска и удвоенной толщины шины, то есть 40 см + 2 * 10 см = 40 см + 20 см = 60 см = 0,6 м.

Теперь, когда мы можем вычислить расстояние, у нас есть все данные для того, чтобы приступить к нахождению силы.

Формула работы для этого случая будет такой: A = F * π * d, то силу, соответственно, можно будет выразить как F = A / (π * d).

В таком случае:

F = 10 кДж / (3,14 * 0,6 м) = 10000 Дж / 1,884 м = ~ 5308 Н.

Ответ: 5308 Н.

В завершение решим самый сложный вариант задачи, включающий в себя все, о чем говорилось выше.

Задача 4

Автомобиль Фольксваген весом 2500 кг заезжает на гору. Какова должна быть его минимальная скорость, чтобы удержаться на горе, если сила тяги равна 10 кН, время работы двигателя – 10 с, КПД – 30%, а угол наклона горы – 60 градусов. Трением и прочими силами пренебречь.

Решение:

На первый взгляд задача может показаться сложной, но для ее решения используются только простые известные формулы. 

Запишем условие в более наглядном виде.

Дано:

m = 2500 кг;

F = 10000 H;

t = 10 с;

КПД = 30%;

угол A = 1500 (60+90, т. к. сила тяжести приложена под углом 90 к горизонтали);

V – ?

Выведение формулы:

Шаг 1. По условию A1 (силы тяжести) = А2 (тяги).

A1 = mg;

A2 = P * t / КПД.

То есть mg = P * t / КПД.

Шаг 2. P = F * V * cosA.

Шаг 3. Общая формула: mg = F * V * cosA * t / КПД.

V = (m * g * КПД) / (F * t * cosA).

Числовое решение:

V = (2500 кг * 10 Н/кг * 30%) / (10000 H * 10 с * cos150);

V = (2500 кг * 10 Н/кг * 0,3) / (10000 H * 10 с * cos60);

V = 7500 / 50000;

V = 0,15 м/с.

Ответ: 0,15 м/с.

Источник: https://nauka.club/fizika/mekhanicheskaya-rabota.html

Механическая работа. Мощность – FIZI4KA

В чем измеряется работа. Механическая работа

ОГЭ 2018 по физике ›

1.Механическая работа ​\( A \)​ — физическая величина, равная произведению вектора силы, действующей на тело, и вектора его перемещения: ​\( A=\vec{F}\vec{S} \)​. Работа — скалярная величина, характеризуется числовым значением и единицей.

За единицу работы принимают 1 джоуль (1 Дж). Это такая работа, которую совершает сила 1 Н на пути 1 м.

\[ [\,A\,]=[\,F\,][\,S\,]; [\,A\,]=1Н\cdot1м=1Дж \]

2. Если сила, действующая на тело, составляет некоторый угол ​\( \alpha \)​ с перемещением, то проекция силы ​\( F \)​ на ось X равна ​\( F_x \)​ (рис. 42).

Поскольку ​\( F_x=F\cdot\cos\alpha \)​, то \( A=FS\cos\alpha \).

Таким образом, работа постоянной силы равна произведению модулей векторов силы и перемещения и косинуса угла между этими векторами.

3. Если сила ​\( F \)​ = 0 или перемещение ​\( S \)​ = 0, то механическая работа равна нулю ​\( A \)​ = 0. Работа равна нулю, если вектор силы перпендикулярен вектору перемещения, т.е.

​\( \cos90\circ \)​ = 0.

Так, нулю равна работа силы, сообщающей телу центростремительное ускорение при его равномерном движении по окружности, так как эта сила перпендикулярна направлению движения тела в любой точке траектории.

4. Работа силы можетбыть как положительной, так и отрицательной. Работа положительная ​\( A \)​ > 0, если угол 90° > ​\( \alpha \)​ ≥ 0°; если угол 180° > ​\( \alpha \)​ ≥ 90°, то работа отрицательная ​\( A \)​ < 0.

Если угол ​\( \alpha \)​ = 0°, то ​\( \cos\alpha \)​ = 1, ​\( A=FS \)​. Если угол ​\( \alpha \)​ = 180°, то ​\( \cos\alpha \)​ = -1, ​\( A=-FS \)​.

5. При свободном падении с высоты ​\( h \)​ тело массой ​\( m \)​ перемещается из положения 1 в положение 2 (рис. 43). При этом сила тяжести совершает работу, равную:

\[ A=F_тh=mg(h_1-h_2)=mgh \]

​При движении тела вертикально вниз сила и перемещение направлены в одну сторону, и сила тяжести совершает положительную работу.

Если тело поднимается вверх, то сила тяжести направлена вниз, а перемещение вверх, то сила тяжести совершает отрицательную работу, т.е.

\[ A=-F_тh=-mg(h_1-h_2)=-mgh \]

6. Работу можно представить графически. На рисунке изображён график зависимости силы тяжести от высоты тела относительно поверхности Земли (рис. 44). Графически работа силы тяжести равна площади фигуры (прямоугольника), ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс
в точке ​\( h \)​.

Графиком зависимости силы упругости от удлинения пружины является прямая, проходящая через начало координат (рис. 45). По аналогии с работой силы тяжести работа силы упругости равна площади треугольника, ограниченного графиком, координатными осями и перпендикуляром, восставленным к оси абсцисс в точке ​\( x \)​.
​\( A=Fx/2=kx\cdot x/2 \)​.

\[ F=kx2/2 \]

7. Работа силы тяжести не зависит от формы траектории, по которой перемещается тело; она зависит от начального и конечного положений тела. Пусть тело сначала перемещается из точки А в точку В по траектории АВ (рис. 46). Работа силы тяжести в этом случае

\[ A_{AB}=mgh \]

Пусть теперь тело движется из точки А в точку В сначала вдоль наклонной плоскости АС, затем вдоль основания наклонной плоскости ВС. Работа силы тяжести при перемещении по ВС равна нулю.

Работа силы тяжести при перемещении по АС равна произведению проекции силы тяжести на наклонную плоскость ​\( mg\sin\alpha \)​ и длины наклонной плоскости, т.е. ​\( A_{AC}=mg\sin\alpha\cdot l \)​. Произведение ​\( l\cdot\sin\alpha=h \)​. Тогда \( A_{AC}=mgh \).

Работа силы тяжести при перемещении тела по двум различным траекториям не зависит от формы траектории, а зависит от начального и конечного положений тела.

Работа силы упругости также не зависит от формы траектории.

Предположим, что тело перемещается из точки А в точку В по траектории АСВ, а затем из точки В в точку А по траектории ВА.

При движении по траектории АСВ сила тяжести совершает положительную работу, при движении по траектории В А работа силы тяжести отрицательна, равная по модулю работе при движении по траектории АСВ.

Следовательно работа силы тяжести по замкнутой траектории равна нулю. То же относится и к работе силы упругости.

Силы, работа которых не зависит от формы траектории и по замкнутой траектории равна нулю, называют консервативными. К консервативным силам относятся сила тяжести и сила упругости.

8. Силы, работа которых зависит от формы пути, называют неконсервативными. Неконсервативной является сила трения. Если тело перемещается из точки А в точку В (рис. 47) сначала по прямой, а затем по ломаной линии АСВ, то в первом случае работа силы трения ​\( A_{AB}=-Fl_{AB} \)​, а во втором ​\( A_{ABC}=A_{AC}+A_{CB} \)​, \( A_{ABC}=-Fl_{AC}-Fl_{CB} \).

Следовательно, работа ​\( A_{AB} \)​ не равна работе ​\( A_{ABC} \)​.

9. Мощностью называется физическая величина, равная отношению работы к промежутку времени, за который она совершена. Мощность характеризует быстроту совершения работы.

Мощность обозначается буквой ​\( N \)​.

\[ N = A/t \]

Единица мощности: ​\( [N]=[A]/[t] \)​. ​\( [N] \)​ = 1 Дж/1 с = 1 Дж/с. Эта единица называется ватт (Вт). Один ватт — такая мощность, при которой работа 1 Дж совершается за 1 с.

10. Мощность, развиваемая двигателем, равна: ​\( N = A/t \)​, ​\( A=F\cdot S \)​, откуда ​\( N=FS/t \)​. Отношение перемещения ко времени представляет собой скорость движения: ​\( S/t = v \)​. Откуда ​\( N = Fv \)​.

Из полученной формулы видно, что при постоянной силе сопротивления скорость движения прямо пропорциональна мощности двигателя.

В различных машинах и механизмах происходит преобразование механической энергии. За счёт энергии при её преобразовании совершается работа. При этом на совершение полезной работы расходуется только часть энергии.

Некоторая часть энергии тратится на совершение работы против сил трения. Таким образом, любая машина характеризуется величиной, показывающей, какая часть передаваемой ей энергии используется полезно.

Эта величина называется коэффициентом полезного действия (КПД).

Коэффициентом полезного действия называют величину, равную отношению полезной работы ​\( (A_п) \)​ ко всей совершённой работе \( (A_с) \): ​\( \eta=A_п/A_с \)​. Выражают КПД в процентах.

  • Примеры заданий
  • Ответы

Часть 1

1. Работа определяется по формуле

1) ​\( A=Fv \)​
2) \( A=N/t \)​
3) \( A=mv \)​
4) \( A=FS \)​

2. Груз равномерно поднимают вертикально вверх за привязанную к нему верёвку. Работа силы тяжести в этом случае

1) равна нулю 2) положительная 3) отрицательная

4) больше работы силы упругости

3. Ящик тянут за привязанную к нему верёвку, составляющую угол 60° с горизонтом, прикладывая силу 30 Н. Какова работа этой силы, если модуль перемещения равен 10 м?

1) 300 Дж 2) 150 Дж 3) 3 Дж

4) 1,5 Дж

4. Искусственный спутник Земли, масса которого равна ​\( m \)​, равномерно движется по круговой орбите радиусом ​\( R \)​. Работа, совершаемая силой тяжести за время, равное периоду обращения, равна

1) ​\( mgR \)​
2) ​\( \pi mgR \)​
3) \( 2\pi mgR \)​
4) ​\( 0 \)​

5. Автомобиль массой 1,2 т проехал 800 м по горизонтальной дороге. Какая работа была совершена при этом силой трения, если коэффициент трения 0,1?

1) -960 кДж 2) -96 кДж 3) 960 кДж

4) 96 кДж

6. Пружину жёсткостью 200 Н/м растянули на 5 см. Какую работу совершит сила упругости при возвращении пружины в состояние равновесия?

1) 0,25 Дж 2) 5 Дж 3) 250 Дж

4) 500 Дж

7. Шарики одинаковой массы скатываются с горки по трём разным желобам, как показано на рисунке. В каком случае работа силы тяжести будет наибольшей?

1) 1 2) 2 3) 3

4) работа во всех случаях одинакова

8. Работа по замкнутой траектории равна нулю

А. Силы трения
Б. Силы упругости

Верным является ответ

1) и А, и Б 2) только А 3) только Б

4) ни А, ни Б

9. Единицей мощности в СИ является

1) Дж 2) Вт 3) Дж·с

4) Н·м

10. Чему равна полезная работа, если совершённая работа составляет 1000 Дж, а КПД двигателя 40 %?

1) 40000 Дж 2) 1000 Дж 3) 400 Дж

4) 25 Дж

11. Установите соответствие между работой силы (в левом столбце таблицы) и знаком работы (в правом столбце таблицы). В ответе запишите выбранные цифры под соответствующими буквами.

РАБОТА СИЛЫ A. Работа силы упругости при растяжении пружины Б. Работа силы трения

B. Работа силы тяжести при падении тела

ЗНАК РАБОТЫ 1) положительная 2) отрицательная

3) равна нулю

12. Из приведённых ниже утверждений выберите два правильных и запишите их номера в таблицу.

1) Работа силы тяжести не зависит от формы траектории. 2) Работа совершается при любом перемещении тела. 3) Работа силы трения скольжения всегда отрицательна. 4) Работа силы упругости по замкнутому контуру не равна нулю.

5) Работа силы трения не зависит от формы траектории.

Часть 2

13. Лебёдка равномерно поднимает груз массой 300 кг на высоту 3 м за 10 с. Какова мощность лебёдки?

Ответы

\vec{S} \)​. Работа — скалярная величина,…”,”word_count”:1307,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: https://fizi4ka.ru/ogje-2018-po-fizike/mehanicheskaja-rabota-moshhnost.html

Механическая работа. Мощность (Зотов А.Е.). урок. Физика 7 Класс

В чем измеряется работа. Механическая работа

В нашем повседневном опыте слово «работа» встречается очень часто. Но следует различать работу физиологическую и работу с точки зрения науки физики. Когда вы приходите с уроков, вы говорите: «Ой, как я устал!». Это работа физиологическая. Или, к примеру, работа коллектива в народной сказке «Репка».

Рис 1. Работа в повседневном смысле слова

Мы же будем говорить здесь о работе с точки зрения физики.

Механическая работа совершается, если под действием силы происходит перемещение тела. Работа обозначается латинской буквой А. Более строго определение работы звучит так.

Работой силы называется физическая величина, равная произведению величины силы на расстояние, пройденное телом в направлении действия силы.

Рис 2. Работа – это физическая величина

Формула  справедлива, когда на тело действует постоянная сила.

В международной системе единиц СИ работа измеряется в джоулях.

Это означает, что если под действием силы в 1 ньютон тело переместилось на 1 метр, то данной силой совершена работа 1 джоуль.

Единица работы названа в честь английского ученого Джеймса Прескотта Джоуля.

Рис 3. Джеймс Прескотт Джоуль (1818 – 1889)

Из формулы для вычисления работы  следует, что возможны три случая, когда работа равна нулю.

Первый случай – когда на тело действует сила, но тело не перемещается. Например, на дом действует огромная сила тяжести. Но она не совершает работы, поскольку дом неподвижен.

Второй случай – когда тело перемещается по инерции, то есть на него не действуют никакие силы. Например, космический корабль движется в межгалактическом пространстве.

Третий случай – когда на тело действует сила, перпендикулярная направлению движения тела. В этом случае, хотя и тело перемещается, и сила на него действует, но нет перемещения тела в направлении действия силы.

Рис 4. Три случая, когда работа равна нулю

Следует также сказать, что работа силы может быть отрицательной. Так будет, если перемещение тела происходит против направления действия силы. Например, когда подъемный кран с помощью троса поднимает груз над землей, работа силы тяжести отрицательна (а работа силы упругости троса, направленная вверх, наоборот, положительна).

Предположим, при выполнении строительных работ котлован необходимо засыпать песком. Экскаватору для этого понадобится несколько минут, а рабочему с помощью лопаты пришлось бы трудиться несколько часов. Но и экскаватор, и рабочий при этом выполнили бы одну и ту же работу.

Рис 5. Одну и ту же работу можно выполнить за разное время

Чтобы охарактеризовать быстроту выполнения работы в физике используется величина, называемая мощностью.

Мощностью называется физическая величина, равная отношению работы ко времени ее выполнения.

Мощность обозначается латинской буквой N.

Единицей измерения мощности я системе СИ является ватт.

Один ватт – это мощность, при которой работа в один джоуль совершается за одну секунду.

Единица мощности названа в честь английского ученого, изобретателя паровой машины Джеймса Уатта.

Рис 6. Джеймс Уатт (1736 – 1819)

Объединим формулу для вычисления работы  с формулой для вычисления мощности.

Вспомним теперь, что отношение пути, пройденного телом, S, ко времени движения t представляет собой скорость движения тела v.

Таким образом, мощность равна произведению численного значения силы на скорость движения тела в направлении действия силы.

Этой формулой удобно пользоваться при решении задач, в которых сила действует на тело, движущееся с известной скоростью.

Список литературы

  1. Лукашик В.И., Иванова Е.В. Сборник задач по физике для 7–9 классов общеобразовательных учреждений. – 17-е изд. – М.: Просвещение, 2004.
  2. Перышкин А.В. Физика. 7 кл. – 14-е изд., стереотип. – М.: Дрофа, 2010.
  3. Перышкин А.В. Сборник задач по физике, 7–9 кл.: 5-е изд., стереотип. – М: Издательство «Экзамен», 2010.

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

  1. Интернет-портал Physics.ru (Источник).
  2. Интернет-портал Festival.1september.ru (Источник).
  3. Интернет-портал Fizportal.ru (Источник).
  4. Интернет-портал Elkin52.narod.ru (Источник).

Домашнее задание

  1. В каких случаях работа равна нулю?
  2. Как находится работа на пути, пройденном в направлении действия силы? В противоположном направлении?
  3. Какую работу совершает сила трения, действующая на кирпич, при его перемещении на 0,4 м? Сила трения равна 5 Н.

Источник: https://interneturok.ru/lesson/physics/7-klass/rabota-moshnost-energija/mehanicheskaya-rabota-moschnost-zotov-a-e

МедНаука
Добавить комментарий